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Math. @ closures are weak*-closures taken in the bidual E**;
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° E(A, E) =0 iff AC E. Hence the inequality implies
Krein's theorem (if H is relatively weakly compact then
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Convexi

Math. / d(co(H), E) < 5d(H, E),

@ Some of the constant involved are sharp.
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© fix now ' € C(K) such that sup,ck |f(x) — f/(x)] < .
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Y(H) 2 2ck(H).

@ Take (fm)m in H, (xn)n in K with 3 limplimp, fyn(xn), limm limp, £ (X))
@ If a > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < .
© fix now ' € C(K) such that sup,ck |f(x) — f/(x)] < .

@ pick x € K a cluster point of (xp)n
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C(K) spaces. .. a taste for simple things

The results C(X) spaces. ..countably K-determined spaces (Lindelof X)

Applications. . . to Banach spaces
Bj1(X) spaces. .. Polish spaces and related ones

Y(H) 2 2ck(H).

Take (fm)m in H, (xn)n in K with 3 limplimg, f(xa), limm limp, £ (X))
If o > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < a.
fix now f’ € C(K) such that sup,cx |f(x)— f'(x)| < a.

pick x € K a cluster point of (xp)n

Since ' and each fy, are continuous f'(x) and f(x) are, respectively,
cluster points in R of (f'(xn))n and (fm(xn))n-
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Take (fm)m in H, (xn)n in K with 3 limplimg, f(xa), limm limp, £ (X))
If o > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < a.
fix now f’ € C(K) such that sup,cx |f(x)— f'(x)| < a.

pick x € K a cluster point of (xp)n

Since ' and each fy, are continuous f'(x) and f(x) are, respectively,
cluster points in R of (f'(xn))n and (fm(xn))n-

Produce a subsequence (xn, )k of (xn)n with limg f/(xn, ) = f'(x).

© 00000

C. Angosto and B. Cascales The quantitative difference between NK and K



C(K) spaces. .. a taste for simple things

The results C(X) spaces. ..countably K-determined spaces (Lindelof X)

Applications. . . to Banach spaces
Bj1(X) spaces. .. Polish spaces and related ones

Y(H) 2 2ck(H).

Take (fm)m in H, (xn)n in K with 3 limplimg, f(xa), limm limp, £ (X))
If o > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < a.
fix now f’ € C(K) such that sup,cx |f(x)— f'(x)| < a.

pick x € K a cluster point of (xp)n

Since ' and each fy, are continuous f'(x) and f(x) are, respectively,
cluster points in R of (f'(xn))n and (fm(xn))n-

Produce a subsequence (xn, )k of (xn)n with limg f/(xn, ) = f'(x).

Q 3 limplimp, f(xn) = limp f(xn) = limy £ (xn, ).
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Y(H) 2 2ck(H).

@ Take (fm)m in H, (xn)n in K with 3 limplimp, fyn(xn), limm limp, £ (X))

@ If a > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < .

© fix now ' € C(K) such that sup,ck |f(x) — f/(x)] < .

@ pick x € K a cluster point of (xp)n

@ Since f’ and each f,; are continuous f'(x) and fiy(x) are, respectively,
cluster points in R of (f'(xn))n and (fm(xn))n-

@ Produce a subsequence (xp, )k Of (xn)n with limg f/(xn, ) = f'(x).

Q 3 limplimp, f(xn) = limp f(xn) = limy £ (xn, ).

Q |[limg f(xn, ) — F(x)] < |limg F(xn, ) = limg £/ (xn )|+ F/(x) — F(x)|<20.
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Y(H) 2 2ck(H).

@ Take (fm)m in H, (xn)n in K with 3 limplimp, fyn(xn), limm limp, £ (X))

@ If a > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < .

© fix now ' € C(K) such that sup,ck |f(x) — f/(x)] < .

@ pick x € K a cluster point of (xp)n

@ Since f’ and each f,; are continuous f'(x) and fiy(x) are, respectively,
cluster points in R of (f'(xn))n and (fm(xn))n-

@ Produce a subsequence (xp, )k Of (xn)n with limg f/(xn, ) = f'(x).

Q 3 limplimp, f(xn) = limp f(xn) = limy £ (xn, ).

Q |[limg f(xn, ) — F(x)] < |limg F(xn, ) = limg £/ (xn )|+ F/(x) — F(x)|<20.

Q I limplim, fn(xn) = limp fn(x) = F(x).
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C(K) spaces. .. a taste for simple things

The results C(X) spaces. ..countably K-determined spaces (Lindelof X)

Applications. . . to Banach spaces
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Y(H) 2 2ck(H).

@ Take (fm)m in H, (xn)n in K with 3 limplimp, fyn(xn), limm limp, £ (X))

@ If a > ck(H), (fm)m has a T,-cluster point f € RX with d(f, C(K)) < .

© fix now ' € C(K) such that sup,ck |f(x) — f/(x)] < .

@ pick x € K a cluster point of (xp)n

@ Since f’ and each f,; are continuous f'(x) and fiy(x) are, respectively,
cluster points in R of (f'(xn))n and (fm(xn))n-

@ Produce a subsequence (xp, )k Of (xn)n with limg f/(xn, ) = f'(x).

Q 3 limplimp, f(xn) = limp f(xn) = limy £ (xn, ).

Q |[limg f(xn, ) — F(x)] < |limg F(xn, ) = limg £/ (xn )|+ F/(x) — F(x)|<20.

Q I limplim, fn(xn) = limp fn(x) = F(x).

@ [limplimpy, fi(xn) = limp limp, fr (x0)| = |limp limp, fn(x0) — F(x)| =
[limg f(xn,) — f(x)|<2a, and (c) is proved.
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C(K) spaces. .. a taste for simple things

C(X) spaces. .. countably K-determined spaces (Lindelof X)
Applications. . . to Banach spaces

Bj1(X) spaces. .. Polish spaces and related ones

The results

Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RX we have that

Y(H) = v(co(H)),
and as a consequence we obtain for H C C(K) that
" RK A~ __RK
d(co(H) ), C(K)) <2d(H ", C(K)). (1)

and in the general case H ¢ RK

d(co(A)" ). C(K)) < 5A(H"" . C(K)). (2)
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tably K-determined spaces (Lindelof X)
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B1(X) spaces. sh spaces and related ones

The results

Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RX we have that

Y(H) = v(co(H)),

and as a consequence we obtain for H C C(K) that

d(eo(H)" ), C(K)) < 2A(A™ , C(K)). (1)

and in the general case H ¢ RK

d(co(A)" ). C(K)) < 5A(H"" . C(K)). (2)

@ d(co(M)™), C(K)) < v(co(H)) = y(H) < 2ck(H) < 2d(H™", C(K))
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C(K) spaces. . . a taste for simple things

tably K-determined spaces (Lindelof X)
App ations. anach spaces
B1(X) spaces. sh spaces and related ones

The results

Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RX we have that

Y(H) = v(co(H)),
and as a consequence we obtain for H C C(K) that
d(eo(H)™), C(K)) < 2A(H™, C(K)). (1)
and in the general case H ¢ RK
d(co(A)" ). C(K)) < 5A(H"" . C(K)). (2)
d(colH)" ). C(K)) < Y(eo(H)) = y(H) < 2ck(H) < 23(H" . C(K)

hen H C RX, we approximate H by some set in C(K), then use (1) and
5 appears as a simple

o
2]

5=2x2+1.
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C(K) spaces. . . a taste for simple things

C(X) spaces. .. countably K-determined spaces (Lindel6f X)
Applications. . . to Banach spaces

Bj1(X) spaces. .. Polish spaces and related ones

The results

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘L'P) we define

X
ck(H):= sup d( () {hn: n>m}Z .C(X,2)).
(hn)nCH  menN

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,1,). Then

ok(H) € 3(AZ ,C(X.2)) (gzck(H)ua(H‘, C(X,2)) (25ck(H).
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The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘L'P) we define

X
ck(H):= sup d( () {hn: n>m}Z .C(X,2)).
(hn)nCH  menN

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,rp), Then, for any f € HZ there exists a sequence (fn)n in H such that
(©)] 5 (b)
sup d(g(x),f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in ZX.

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,1,). Then

ok(H) € d(AZ ,C(X.2)) (gzck(H)ua(H., C(X,2)) (gsck(H).
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The results

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘L'P) we define

X
ck(H):= sup d( () {hn: n>m}Z .C(X,2)).
(hn)nCH  meN

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,rp), Then, for any f € HZ there exists a sequence (fn)n in H such that
(©)] 5 (b)
sup d(g(x),f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in ZX.

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,1,). Then

ok(H) € d(AZ ,C(X.2)) (gzck(H)ua(H., C(X,2)) (gsck(H).

For the particular case ck(H) = 0 we obtain all known results about compactness in Cp(X) spaces.

M
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C(K) spaces. . . a taste for simple things

C(X) spaces. .. countably K-determined spaces (Lindel6f X)
Application: o Banach spaces

Bj1(X) spaces. .. Polish spaces and related ones

The results

The technicalities for C(X)

Let (Z,d) be a metric space, X a set and € > 0.

(i) We say that a sequence (f;)m in ZX e-interchanges limits with a
sequence (xp)n in X if whenever the limits below exist we have

d(Iirr1n Iiy fm(Xxn), Iinr;n Ii,r;n fm(xn)) < €.

(i) We say that a subset H of ZX g-interchanges limits with a subset A of
X, if each sequence in H e-interchanges limits with each sequence in A.
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C(K) spaces. taste for simple things

C(X) spaces. .. countably K-determined spaces (Lindel6f X)
Applications. . . to Banach spaces

Bj1(X) spaces. .. Polish spaces and related ones

The results

X topological space, (Z,d) a separable metric space and H C (ZX,‘L'p) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H
2¢-interchanges limits with relatively countably
compact subsets of X.
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C(X) spaces. .. countably K-determined spaces (Lindel6f X)
Applications. . . to Banach spaces

Bj1(X) spaces. .. Polish spaces and related ones

The results

X topological space, (Z,d) a separable metric space and H C (ZX,‘EP) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H
2¢-interchanges limits with relatively countably
compact subsets of X.

(i) thereis ¥ c NN and a family {Aq : @ € £} of
non-void subsets of the set X such that
X=U{Aq:aeX};

(i) for every a =(aj,ap,...) € X the set H
&-interchanges limits in Z with every
sequence (xp)p in X that is eventually in
each set Ca‘m, m e N, where

Cojm =U{Ap : B€X and B|m = a|m}.

_7X
Then for any f € HZ there exists a sequence
(fa)nen in H such that

sup d(g(x),f(x)) < e
xeX

for any cluster point g of (fn)nen in ZX.
4
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each set Ca‘m, m e N, where
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(fa)nen in H such that
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for any cluster point g of (fn)nen in ZX.
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X topological space, (Z,d) a separable metric space and H C (ZX,‘C,,) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H
2¢-interchanges limits with relatively countably
compact subsets of X.

(i) thereis ¥ c NN and a family {Aq : @ € £} of
non-void subsets of the set X such that
X=U{Aq: e}

(i) for every a =(aj,ap,...) € X the set H
&-interchanges limits in Z with every
sequence (xp)p in X that is eventually in
each set Ca‘m, m e N, where
Cojm =U{Ap : B€X and B|m = a|m}.

_7X
Then for any f € HZ there exists a sequence
(fa)nen in H such that

sup d(g(x),f(x)) < e
xeX

for any cluster point g of (fn)nen in ZX.

_7X
Let X be a countably K-determined space. Then, for any f € HZ
there exists a sequence (fp)n in H such that

su)p(d(g(x)tf(x)) (2 2ck(H) +2d(H,C(X,Z)) (g>4ck(H)
x€

for any cluster point g of (fp) in ZX.

Proof .-

o Let T: X — 2X be the usco map, X c NN such that
UH{T():xeX}=X;
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X topological space, (Z,d) a separable metric space and H C (ZX,‘C,,) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H
2¢-interchanges limits with relatively countably
compact subsets of X.

(i) thereis ¥ c NN and a family {Aq : @ € £} of
non-void subsets of the set X such that
X=U{Aq: e}

(i) for every a =(aj,ap,...) € X the set H
&-interchanges limits in Z with every
sequence (xp)p in X that is eventually in
each set Ca‘m, m e N, where
Cojm =U{Ap : B€X and B|m = a|m}.

_7X
Then for any f € HZ there exists a sequence
(fa)nen in H such that

sup d(g(x),f(x)) < e
xeX

for any cluster point g of (fn)nen in ZX.

_7X
Let X be a countably K-determined space. Then, for any f € HZ
there exists a sequence (fp)n in H such that

su)p(d(g(x)tf(x)) (2 2ck(H) +2d(H,C(X,Z)) (g>4ck(H)
x€

for any cluster point g of (fp) in ZX.

Proof .-

o Let T: X — 2X be the usco map, X c NN such that
UH{T():xeX}=X;

e Take A := T () for every o € X: (i) in Lemma 2 is satisfied.
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X topological space, (Z,d) a separable metric space and H C (ZX,‘C,,) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H
2¢-interchanges limits with relatively countably
compact subsets of X.

(i) thereis ¥ c NN and a family {Aq : @ € £} of
non-void subsets of the set X such that
X=U{Aq: e}

(i) for every a =(aj,ap,...) € X the set H
&-interchanges limits in Z with every
sequence (xp)p in X that is eventually in
each set Ca‘m, m e N, where
Cojm =U{Ap : B€X and B|m = a|m}.

_7X
Then for any f € HZ there exists a sequence
(fa)nen in H such that

sup d(g(x),f(x)) < e
xeX

for any cluster point g of (fn)nen in ZX.

_7X
Let X be a countably K-determined space. Then, for any f € HZ
there exists a sequence (fp)n in H such that

su)p(d(g(x)tf(x)) (2 2ck(H) +2d(H,C(X,Z)) (g>4ck(H)
x€

for any cluster point g of (fp) in ZX.

Proof .-

o Let T: X — 2X be the usco map, X c NN such that
UH{T():xeX}=X;

e Take A := T () for every o € X: (i) in Lemma 2 is satisfied.

e For every a € ¥, every sequence (xp)n in X that is eventually
in each set Ca‘m, meN, lies in a compact subset of X.
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The results

X topological space, (Z,d) a separable metric space and H C (ZX,‘C,,) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H ) %
2¢-interchanges limits with relatively countably Let X be a countably K-determined space. Then, for any f € H
compact subsets of X. there exists a sequence (fp)n in H such that

(i) thereis = c NN and a family {Aq: @€ X} of | for any cluster point g of () in ZX.
non-void subsets of the set X such that
X=U{Aq:aecX};

, Proof.-

(i) for every a =(aj,ap,...) € X the set H
&-interchanges limits in Z with every o Let T:% — 2X be the usco map, £ C NV, such that
sequence (xp)n in X that is eventually in UH{T():xeX}=X;

el 52 Gy GNE N} WhEE Take A := T () for every o € X: (i) in Lemma 2 is satisfied.
Cojm =U{Ap : B€X and B|m = a|m}. ) .
For every a € ¥, every sequence (xp)n in X that is eventually

__zX in each set Ca‘m, meN, lies in a compact subset of X.
Then for any f € H™  there exists a sequence

(fa)nen in H such that Apply Lemma 1 to obtain that for

© 00

sup d(8(x), F(x)) < £ & :=ck(H)+d(H,C(X,Z))
XX (ii) in Lemma 2 is satisfied.

for any cluster point g of (fn)nen in ZX.
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The results

X topological space, (Z,d) a separable metric space and H C (ZX,‘C,,) relatively compact. J

If we define € := ck(H) +d(H, C(X,Z)), then H ) %
2¢-interchanges limits with relatively countably Let X be a countably K-determined space. Then, for any f € H
compact subsets of X. there exists a sequence (fp)n in H such that

(i) thereis = c NN and a family {Aq: @€ X} of | for any cluster point g of () in ZX.
non-void subsets of the set X such that
X=U{Aq:aecX};

; Proof.-

(i) for every a =(aj,ap,...) € X the set H
&-interchanges limits in Z with every o Let T:% — 2X be the usco map, £ C NV, such that
sequence (xp)n in X that is eventually in UH{T():xeX}=X;
each set Ca‘m, m e N, where

Take A := T () for every o € X: (i) in Lemma 2 is satisfied.

Cojm =U{Ap : B€X and B|m = a|m}. ) .

For every a € ¥, every sequence (xp)n in X that is eventually
__zX in each set Ca‘m, meN, lies in a compact subset of X.

Then for any f € H™  there exists a sequence

(fa)nen in H such that

© 00

Apply Lemma 1 to obtain that for

sup d(8(x), F(x)) < £ & :=ck(H)+d(H,C(X,Z))
XX (ii) in Lemma 2 is satisfied.

©

for any cluster point g of (fn)nen in ZX. Lemma 2 finishes the proof.
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The results

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘L'P) we define

X
ck(H):= sup d( () {hn: n>m}Z .C(X,2)).
(hn)nCH  meN

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,rp), Then, for any f € HZ there exists a sequence (fn)n in H such that
(©)] 5 (b)
sup d(g(x),f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in ZX.

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,1,). Then

ok(H) € d(AZ ,C(X.2)) (gzck(H)ua(H., C(X,2)) (gsck(H).

For the particular case ck(H) = 0 we obtain angelicity of Cy(X) (Orihuela).

M
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.. a taste for simple things
countably K-determined spaces (Lindel6f X)

The results
o Banach spaces

... Polish spaces and related ones

If K is a compact convex subset of a l.c.s., &/(K) is the space of
affine functions defined on K, and %C(K) C(K)N(K).

Let K be a compact convex subset of a l.c.s. Then for any
bounded function f in </ (K) we have

d(f,C(K))=d(f,#(K)).

Corollary

Let E be a Banach space and let Bg- be the closed unit ball in the
dual E* endowed with the w*-topology. Let i : E — E** and

J: E* — lo(Bg+) be the canonical embedding. Then, for every
x** € E** we have:

d(x™,i(E)) = d((x™), C(Be+))-
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B1(X) spaces. .. Polish spaces and related ones

The results

Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:
o(H) :=inf{e >0: HC K¢ +&BE and K C X is w-compact},
Y(H) := sup{| lim lim fn(xn) — limlim fn(xn)| : (fm) C Be+,(xn) C H},
assuming the involved limits exist,

ck(H):= sup d( h,:n>m
(H) (h)p mQN{ >m)" E),

k(H):=d(H" ,E)= sup _d(x*,E),
x**EH
where the w*-closures are taken in E** and the distance d is the usual inf
distance for sets associated to the natural norm in E**.
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The results

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) < 2k(H) <20(H),
Y(H) = Y(co(H)) and (H) = &(co(H)).
For any x** € PW*, there is a sequence (xn)n in H such that
5" =y ™| < A(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, one (equivalently all) of the numbers
ck(H),k(H),y(H) and w(H) is zero.

Remark

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From
k(co(H)) < 2k(H) straightforwardly follows Krein-smulyan theorem.
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C(X) spaces. .. countably K-determined spaces (Lindelof X)
Applications. . . to Banach spaces
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Corson property implies k(-) = ck(-)

The results

If E is a Banach space with Corson property €, then for every
bounded set H C E we have ck(H) = k(H).

Problem

Do we have the equality ck(-) = k() for every Banach space?
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C(X) spaces. .. countably K-determined spaces (Lindelof X)
Applications. . . to Banach spaces
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Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of C(K).

Let us define

Vi (H) := sup{| |i’r7n “an fm(xn) — “,';In “r';n fm(xn)| : (fm) C H,(xn) C K},
assuming the involved limits exist. Then we have

Yk (H) < y(H) <2k (H).

Theorem (Gantmacher)

Let E and F be Banach spaces, T : E — F an operator and T* : F* — E* its

adjoint. Then

YT (BEg)) < UT"(BF-)) < 2¢(T(Be)).
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o Banach spaces
... Polish spaces and related ones

The results

There is separable Banach space E and a sequence (T,), of operators
Th: E — cg such that

o(Tp(Bn))=1  and  o(T,"(BE")) < w(Tn(BE)) <

1
n

Note that this example says, in particular, that there are no constants m, M > 0 such that for any bounded operator
T :E — F we have

moo(T(Be)) < o(T* (Bp+)) < Ma(T(Bg)).

Y and @ are not equivalent measures of weak noncompactness, namely there is
no N > 0 such that for any Banach space and any bounded set H C E we have

o(H) < Ny(H).
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The results

How to measure distances to By (X)?
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How to measure distances to By (X)?

We use an index of o-fragmentability. )
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The results

How to measure distances to By (X)?

We use an index of o-fragmentability. )

If X topological space, (Z,d) a metric and f € ZX and & > 0:

@ f is e-fragmented if for every non empty subset F C X there
exist an open subset U C X such that UNF # @ and
diam(f(UNF)) <e;
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Applications. . . to Banach spaces
Bj(X) spaces. . . Polish spaces and related ones

The results

How to measure distances to By (X)?

We use an index of o-fragmentability. )

If X topological space, (Z,d) a metric and f € ZX and & > 0:

@ f is e-fragmented if for every non empty subset F C X there
exist an open subset U C X such that UNF # @ and
diam(f(UNF)) <e;

@ f is € — o-fragmented by closed sets if there is countable
family of closed subsets (X,), that covers X such that f|x, is
e-fragmented for every n € N.
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C(X) spaces. .. countably K-determined spaces (Lindelof X)
Applications. . . to Banach spaces
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The results

Indexes of fragmentability and o-fragmentability

If X topological space, (Z,d) a metric and f € ZX. We define:

o-fragc(f) :=inf{e > 0: f is € — o-fragmented by closed sets}

Theorem

If X is a metric space, E a Banach space and f € EX then

1

> o-fragc(f) < d(f, B1(X,E)) < o-frag.(f).
In the particular case E =R we precisely have

d(F, By(X)) = %G—fragc(f).
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S(f2) = {(x,y) 1y = folw)} f2 L s. convex
il s
h cont.
fiu fo h affine
1S,
fi
U(f) = {(z,9) 1y < fi(2)}
Katetov theorem (X normal) fi . s. concave Hahn
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